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Nikolai Gur’evich Chetaev was concerned with essential and difficult 
problem of analytical dynamics, theory of stability of motion, mathe- 
uatical pbsica and the theory of differential equations. 

In his scientific activity Chetaev was guided by the opinion that 
‘only those investigations have value which arise frou applications... 
and only those theories are actually useful which result from the con- 
sideration of particular ca8esR (1): 

The investigations of Chetaev are distinguished by the rigor of the 
formulation of the problem aud the Irreproachability of Its solution. 
Chetaev, following Liapuuov. shared the opinion that .lt is not peruis- 
slble to make use of doubtful reasoning as soon as we are concerned with 
the solution of a definite probleu. whether it be a problem of rechanics 
or physics, provided only that the problem la accurately stated from the 
point of view of the analysis. The uouent it Is stated the problem be- 
coues a probleu of pure analysis which is to be treated as such* (2). 

Chetaev wrote his papers in the uost concise style, here and there 
even laconically. The reading of his papers, therefore, calls for serious 
preparation and attention on the part of the reader. The difficulties In 
reading his papers are the result, also, of the essential difficulties 
of the probleus considered. 

1x1 Chetaev’s investigations. analytical dynamics, stability of motion 
and the theory of differential equations are closely interwoven. There- 
fore, the subdivision of this survey Into (A) analytical dynamics. (Bl 
theory of the stability of motion, (C) works on the qualitative methods 

l Numbers In square brackets refer to the list of papers of N.G.Chetaev; 
that follows this article; those In parentheses to the references. 

(1) A.M. Liapunov, Pafnutii I’uouich Chsby~heo. Soobrhch. Kharkov. 

noten. Obehch (Corn.. of the Khrrkov Moth. Sot.). 6. 1695. 

(2) A.M. Llapunov, Obehchoia radacho of urtoichivorti duizhrniia 
(General probler of the rtability of motion). Kharkov, 1893; 2nd ed. 
Moscow-Leningrad, 1935; Isdat. Akad. Nauk GGGR. 1948; GOS. Tekhn. Teor. 
Indat., Moscow-Leningrad. 1950. 
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In the analysis and (D) work8 on the applied problems is of a conven- 

tional nature only. 

A. Analytical Bynamlcs 

The works of Cbetaev on analytical dynamics can be subdivided Into 

four sections: Gausslan principle and Its q odlflcatlons, equations of 

dynamics In terms of group variables, stable trajectorlea In dmm8lcs 

and the optical-mechanical analogy. 

f. Caurrion principle and its modificatiow. In 1829 Gauss published 

a theorem which Is known to-day a8 the principle of Gauss. This tbeoreu 

wa8 formlated by him a8 follows: .Tbe 8otlon of a syetem of particles 

constrained In any 8anner and subject to arbitrary Influences re8ains at 

any Instant 8ost consistent with that motion which the particles would 

have acquired If tbev became free, I.e. the 8otion take8 place under the 

least possible constraint If by the measure of the copetraint at an 

Instant we understand the SUB of the products obtained by n ultlpl~lng 

the ma88 of each particle by the square of It8 deviation from that posl- 

tlon which It would OCCUPY If It were a free partlcle8. 

The principle of Gauss attracted the attentlon of a series of 

scholars. In particular. Appell and Delassua applied this principle to 

the lnvestlgatlon of mechanical ayeterns with nonlinear nonbolonomlc con- 

straints. Gowever, due to their definition of virtual displacements for 

such systems, the principle of Gauss turned out to be Inconsistent with 

the principle of d’dlembert and Lagrange. 

At Kazan’ E.A. Bolotov was Interested In Gauss’ principle. In 1918 be 

gave the most elegant treatu8nt of this principle for linear nonbolonomlc 

systems. Naturally, also, Cbetaev’a attention was attracted by this 

prlnclple. 

In his paper [4 I. written while a student, Cbetaev applied the Gauss 

principle to the solution of the most difficult problem concerned with 

the detemlnatlon of that branch of the possible branches of equlllbrluu 

along which the mass of a rotating llquld In the neighborhood of a point 

of bifurcation will proceed. l 

The principle of d’Ale8bert and Lagrange result8 fro8 the ax108 which 

define8 8800th conatralnts. and the contradiction between this principle 

and that of Gauss arose In analytical mzcbanlcs In the process of the 

growth of new Idea8 about constraints (passage from linear bolonomlc to 

l This paper of Cbetaev will be considered later. 
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nonllnear) which required neu ideas about virtual displacewMs. Chetaer 
generalized this fundamental concept of analytical mechanics [14 I, and 
this generalixation permitted him to retain Gauss’ principle rithin the 
framerork of the d’Alembert and Lagrange princfple. 

Another merit of Chetaev, connected rith Gauss’ principle, refers to 
the development of a new approach to the problem of the release of 
material systems from constraints. As is rell-knorn, Gauss’ principle is 
connected rith a particular transformation of material systems, namely, 
that one rhicb releases material systems from all their constraints. In 
mechanics many attempts have been made to generallue the Gaussian concept 
of release, and at the same time also Gauss’ principle. Before Chetaer 
two kinds of releases uere considered: complete and partial releases. In 
the first case, the system is set free from all of its constraints. rhlle 
in the second the system is released only partially of its constraints. 
Chetaer proposed to consider as a release of a mechanical system any of 
Its transformations subjected to a definite mathematical algorithm (para- 
metric release of material systems). 

In paper [ 14 1 a mechanical system uith k degrees of freedom is con- 
sidered, subject to nonholonomic nonlinear constraints depending explic- 
itly on time. The position of the system at the given Instant is deter- 
mined by the orthogonal Cartesian coordinates (xi, yi, Zi) or by the 
generalieed Independent coordinates ql, . . . , qk, The velocities of the 
particles in the actual motion of the system are 

rhere a prime denotes the derivative with respect to time. 

Chetaev defines the virtual displacements axiomatically by the ex- 
pressions 

where the 8q, are arbitrary Infinitely small quantities. 

Ilow, it Is not difficult to show that for such a definition of the 
virtual displacements Gaoss’ principle follow from that of d*Alembert. 
rhen introduced as a consequence of the axiom defining smooth constraints. 

In fact, denote by dXi’.* dJi*s dZi* the changes in the velocities of 
the particles of the system during an interval dt in the actual motion. 
and by 8~~” 8~~‘~ 6~~’ the changes of the velocities in a conceivable 
motion. calculated for the saw) coordinates and velocities at the instant 
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t as In ths actual motion, and finally by dXi*r dri’i a,i’ the changes of 
the velocities In the released motion. 

Then the principle of d’blembert and Lagrange gives the equation 

Ad8 + AdB - A,,=G 

where A, = c “$ [(dzi ‘-l&‘)“+ (dyi’---ayi’)*+ (dz,‘--az,‘)*] is the measure 

for the deviation of the motion (d) from that of (8) during the tfme dt. 

The qUaIItitie8 A&j and Aa are defined analogously. 

From here lmmedfately follows the well-known theorem of Mach for non- 
holonomic nonlinear constraints 

Ad,<A8% 

This theorem contains Gauss’ principle as a particular case provided that 
one takes for the motion (8) the motion of the system which is completely 
released from the constraints. 

In addition, another theorem is obtained which was first noticed by 
Chetaev, namely 

Ad8 < A6a 

In this way Chetaev, introducing a new definition for the virtual dls- 
placements. this definition being the most general of all the known de- 
finitions uR to the present date, solved one of the important problems of 
analytical mechanics. 

At the present time Chetaev’s definition of the virtual displacements 
has received general recognition. 

The RaRer by N.E. Kochin “On the release of mechanical aysteas”, in 
which Chetaev’s definition of the virtual displacements is used, has a 
bearing on Chetaev’s work in connection with Gauss’ principle. 

Next. Chetaev proposed an original modification of the Gaussian 
principle. 

Be conelders a mechanical system restricted by linear smooth con- 
straints 125 1 and calculates for this system the work 7 along the ele- 
mentary cycle, consisting of the direct conceivable mot&n (according to 
Gauss) in the field of forces acting on the system and of the inverse 
motion in the field of forces. the presence of which would be sufficient 
for the realization of the actual motion provided that the mechanical 
system were completely free. 

BY the application of Gauss’ principle it is proved that the work T 
along an analogous cycle constructed for the actual motion is an extremum 
of T 

P’ 
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Thus, this theorem is equivalent to Gauss’ principle. By meana of 
Carnot’s principle In thermodynamics this theorem permits us to widen the 
nature of tbe usually-considered mechanical systems. This theorem is also 
interesting as an immediate modification of an idea of Herman and Euler 
and developed by Lagrange in his exposition of d’Alembert’s principle. 

Paper [27 1 is immediately related to these Investigations of Cbetaev. 
It is concerned with the motion of a mechanical system depending upon 
certain forced variable parameters 8,. the variations of which are con- 
nected with the coordinates xi, yi, Zi of the system and are such that 
they do not admit the hypothesis of very small or adiabatic variation. 
The system is subjected to ideal constraints, restricting the possible 
displacements 68,. &xi, 6y,, 62, by means of linear relations. 

In the paper, a basic principle of dynamics for such systems Is es- 
tablished. the principle of d’dlembert and Lagrange Is generallsed, and 
this principle is then modified. It turns out that the work A, calculated 
along the elementary cycle consisting of the direct actual motion in the 
field of acting constraints and forces and of the inverse motion in the 
field of forces sufficient for the realization of the actual motion If 
the mechanical system were completely free, Is a minimum of A , where A 
is the work calculated along the elementary cycle in a conceitable mot&n 
(In the sense of Gauss). 

In the case where the actual displacements of a mechanical system are 
among ita possible displacements the theorem of via viva is obtained. 
This theorem leads to a series of Important consequences, In pa~rtlcular. 
those relating to the stability of the equilibrium position. 

Cbetaev’s paper “On certain constraints with friction9 167 I, 
published in this Issue, is of great Interest. 

Usually. considering systems with friction, the latter, by introduc- 
tion of rriction forces, are reduced to systems with amootb constraints. 
Such systems are then Investigated by the usual methods of mechanics. 
Cbetaev showed that, with sufficiently broad assumptions concerning the 
friction forces, a general theory of material systems with constraints 
of the friction type can be developed. Addition of friction forces to the 

forces acting on the system is not required. 

2. Bqaationt of motion in *term of group variablcr. Geometrically, a 
motion can be interpreted as a transformation of variables. 

Transformations can be carried out in various waya. The set of trams- 
formations representing the motion possesses particular properties which 
8. Lie and F. Klein reduced to the concept of a transformation group. 

The development of these representations of the motion lead to the 
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establishment of the equations of mechanics in terms of a certain Lie 
group of Infinitesimal transformations. These equations were introduced 

into mechanics in 1901 by II. Poincar& Considering a mechanical system 
with n degrees of freedom, restricted by smooth holonomic stationary 

constraints and under the action of forces which admit a force function, 
Poincar6 introduces n operators of the transitive group and obtains the 
differential equations of motion in terms of the new group variables. 

In Papers [ 5.6 ] , Chetaev considers the same problem as Polncark, but 

assumes that the constraints are nonstationary, and determines the posi- 
tion of the system by means of the dependent coordinates ~1, . . . . or. 
Then, lnfinltesimal operators of a certain Intransitive group 

x0 (f) = 2 + Ed g + . . . + 60’ 2 * X,(f)=r&i$g (i = 1, . . . , n) 
r 1 j 

can be found by means of which the transformation 
n 

2 qtXi (1) dt + Xo (f) dt 
1 

carries the system from the given position Into an Infinitely near 

position In the actual displacement while the transformation 

does the same in a possible displacement. 

Further, assuming that the operator X,(f) 
and making use of the Hamiltonian principle, 
tlons of motion in the form of Polncarg. 

commutes with all the Xi(f) 
the author obtains the equa- 

(i = 1, . . ., n) 

and also in a new canonical form 

dYi -z=z %tkYk~ aH - x, (H), 

H=xyiq-T + V 

where the C,j& are the structural constants of the group. These equations 
are now called the Chetaev equations In terms of group variables. 

Next, is proved the existence of a relative integral Invariant of the 
first order for the system of the equations of motion. 

Further, Chetaev establishes a Jacobi-Hamilton type differential equa- 
tion in partial derivatives 



344 A r~~rvcy of the rcientific wotkr of R.C. Chetacv 

x0 e, + J-l P. Tlr . . . . + Xl (V). . . ., x, (V)] = 0 

which is satisfied by the function of action V( t, x1, . . ., xr. aI, . . . , 
ar) and shows that if a complete Integral of this equation la found, then 
the solution of the dynamical problem is reduced to the equations 

W 
- = b. aa, tS Yi” xiV) (Ui, bi = const) 

Paper [8 I ends with a proof of Poisson’s theorem which permits us to 
construct a new Integral of the equations of motion provided that two in- 
tegrals of these equatfons are known. 

In Paper [26 I. which was published considerably later, a further 
treatment of this field of analytical dynamics Is given. In particular, 
obtaining for the action function the expression 

avo=~~,x,(v)+~~,~x,~(v)=r,Y,~,-~Y~~~~” 

where XI0 Is the operator X, applied at the initial instant ts, Chetaer 
proves the erlstence of the linear form 

which determines a relative integral Invariant of the first order. and 
the quadrat fc Invariant form 

To new problems of analytical dynamics belongs the important probles 
concerning the construction of a group of possible and actual displace- 
aents, when the constraints are given by a differential form. 

In this same paper [ 26 1 Chetaev introduces the concept Of cJclfC dis- 
placements. The author calls a displacement X0 CJCIIC if 

x, (L) = 0, (X,. x/J = 0 (a=s + 1, . . ., n, k-1, . . ., n) 

holds, where CX,, Xk) is a Poisson bracket and L = T + U Is the Lagrangirn 
function in terms of the group variables. Under these conditions r - 8 
Integrals of the Poincar&Chetaev equations 

al. 
-= 
8% sa 

can easily be found. For the remalnlng noncJcllc displacements the equa- 
tions reduce to the form 
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rhera 

If. In addition. c . z 0, then these equations are the equations of 

motion of a certain h::nomic system, the role of the tagrangian function i 

being played hy the Routh function R. 

At the end of Paper [ 26 1 Chetaev makes two important observations 
about the solution of equations of motion in terms of group variables: 
first, rhen the group is intransitive, and, second, about the possibility 

of solving equations of the type of Hamilton-Jacobi in terms of more 
general functions than the function of action. 

This paper [26 ] of Chetaev determined in many ways the direction of 
subsequent investigations Into the dynamics of mechanical systems in 
terms of group variables. 

In Paper [50 ] an example is given of the application of the above- 

mentioned equations to the problem of motion of a similarly changed body. 

A concrete group of Lie Is constructed for such a body, and for the first 
time the equations of motion are obtained analytically. 

In this paper Chetaev acknowledged his debt to his former teacher. the 

Kazan’ geometrician and mechanician, D.N. Zeiliger. 

3. Stable trajcctorier in dynaricr. In Paper [ 12 1 Chetaev. apparently 
for the first time. briefly pointed out the essential importance of 
theoretically stable motions and their relation to the actual motions in 
mechanics. 

Let ql, . . . . q,, and pl. . . . . p, be. respectively, the generalized co- 
ordinates and their conjugate momenta of a holonomic system subject to 
stationary constraints and forces admitting a force function U,,(ql, . . . . 

cl,). 

The coefficients gi j in the quadratic form of the kinetic energy 

T = f 2 gijPiPj 

will depend only on the coordinates. 

The complete integral of the Hamilton-Jacobi equation has the form 

- ht + V. (qh . . ., qn. al, . . ., a,) 

The energy constant h depends on non-additive constants ul, . . . . aa, and 
the general solution of the mechanical problem is given by the rell-known 
f ormnlas 
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(3.4) 

where the Bi are new conStallt8 Of integration. 

ff the Hamilton function ff(qil . . . , q,,, pl. . . . , p,,) has the meaning 
of the total energy T - UO, then the Bamilton canonical differential 
equations of motion 

89, i3H -=--, 
dt +, 

dp,= i+H 
dt -aQ8 (3.2! 

have the variational equations of Poincare in the form 

(3.3) 

(i=1,. ..) n) 

Fixing the constazts aI, . . . , a,, @I* . . ., &, any motion can be 
assumsd for the unperturbed motion. The problem of stability of this 
motion then can be formulated with respect to the coordinates ql, . . . . q, 
under the condition that the constants aI, . . . . a,, do not undergo vari- 
ations. By virtue of this condition it then follons,from (3.1) that, to 

within small quantities of the second order, 

This permits us to write the first group of Equations (3.3) by taking 
into account the relation 

In the form 

(3.4) 

Noticing further that by virtue of the structure of Bwations (3.2) 
the stability of the considered motion in the first approximation f8 
possible only for the zero values of the Liapunov characteristic numbers 

of the solutions of these equations. Chetaev concludes that a necessary 
condition for the stability is 

where x is the characteristic number of the function in parentheses. The 
as&en is assumed to be regular (2) 1 aa is natural to assume if we are 
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dealing with Nature.. .” [ 12 I. 

The set of unperturbed motions with fixed constants al, . . . . an, 
Chetaev calls a packet. Further, pointing out the difficulties of judging 
the stability by the first approximation in problems of mechanics, he in- 
troduces potential perturbation forces and states the requirements for 
stability as follows: 

‘In Nature it is natural to assume that the perturbation forces admit 
a force function I depending on the variables Qi. The perturbation forces 
tend to increase the value of the function I; their influence on the 
packet at an arbitrary point q. of the phase space is proportional to 
the density of the trajectories at this point 

*Prom this it follows that the perturbing forces 
relatively less, far which 

where d I denotes a volume element of the phase space. This means that 

W Jlfii’ dT - maximum 

disturb that packet 

(3.6) 

considering the set of all motions, the perturbing forces assign absolute 
stability to that packet which satisfies the condition (3.6). The trajec- 
tories of this packet will be called permissible orbits. To make COR- 
parisons possible assume for the measurement of the density the natural 
assumption 

s 
$Jr*dz=l 

*In order to determine the differential 
problem f3.i?), consider that motion of the 

equation of the variational 
material system which would 

have taken place under the same initial data but, in addition, under the 
action of the perturbation forces. Here the energy integral always exists 

T=W+U,+-h 

#This allows us to write the integral (3.6) in a different form 

where in T, instead of the 
substituted, corresponding 
of the density function 

s (T - U, - h) Jlt)‘dT 

variables pi’ the derivatives dv/aqi must be 
to the unperturbed motion. If the expression 

is taken into account, then we can conclude that 
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l Consequently. the Integral (3.8) can be mitten as follows: 

mFrom here, after obvious transforsations, we obtain the folloriag 

relation 

for the determination of the differential equation of the variational 

problem (3.6). Whence the basic equation for the pemissible orbits Is 

A++W,+W--$+=o (3.7) 

‘If AA = 0. then our basic equation (3.7) assumes the form of the 
differential equation on which Schrodfnger in his l Ahhandlungen zur 

Uellenmechanik* has based his uave mechanlcs.g 

Remarking casually that the regularity of the solution of Equation 

(3.7) leads to the elgenralues of the constants ~1, . . . , a,, (Le. also 

of h), and consequently, to a discrete disposition of stable trajectories, 

Chetaev concludes this paper [ 12 1 in the follouing way: 

‘We think about a material system moving under the action of certain 

forces in a weak field of perturbations. This latter destroys any motion. 

provided only that it is not stable and permissible. In this rag stable 

and permissible motion8 are preserved. But it can never be sssumed that 

in Nature the motion takes place along a stable trajectory. Thsre alnavs 

exist small deviation8 due to which the actual motions of a material 

system take place in a sufficiently amall domain enveloping a stable 

trajectory 

-Adjacent trajectories. differing as little as desired from a stable 

trajectory, n u8t ‘oscillate’ around the latter OtI = O)*; this phenomenon 

gives us an idea of a ‘wave’ l . 

Passing to Paper [ 19 1 by Chetaev ‘On stable trajectories of dynamics’, 

let us quote in full, first of all, that part at the beginning of the 
paper rhloh is b+aic to the author’s conclusions connected with his 

principal approach to the problems of the stability of motion: 

gliou are the laws of nature found? 

l Here K, denote8 the characteristic number of the 8OlUtiOn of system 
(3.4). 
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.To explain any mechanical phenomenon of Nature we first make definite 
hypotheses about the essential moving forces. This permits as to write 
down certain differential equations of motion in terms of the variables 
x8 of the material system under consideration. In the case, where the 
solutions of these differential equations give for the functions studied 
q& values which are near the experimental data (to within the limits of 
the errors of the experiment), the hypothesis is assumed as a law of 
Nature, at least until experiments reveal new facts which contradict it. 
When such facts are discovered, new hypotheses are made without any re- 
striction by the customary fundamental concepts which hold at that time. 
This is only done provided tbat in the framework of the latter it is ia- 
possible to obtain good agreement with the experiment. 

-Then can the deviations of the theory from the experiment be in- 
significant? 

‘gvery time that we make an attempt to explain these or any other 
phenomena of nature, we must not forget that in reality no phenomena 
present themselves in a pure form. No matter how precisely the forces 
acting on the system are determined, there will always exist weak per- 
turbations rhich have not been taken Into account. These latter, no 
matter how small they eaj be, influence the motion of the material aretern 
and give to the functions, the values of which are determined experiment- 
ally. not the theoretical values $b but certain other values PI, 

*Assume that for the perturbation forces of a certain true and for 
small perturbations of the initial data, not exceeding numerically a 

certain small quantity E, the inequality 

holds for all t exceeding the initial instant to. Further assume that for 
an arbitrary number L there always exists a small number t different 
from zero. Then the unperturbed (theoretical) motion of the mechanical 
system subject to the given perturbation forces is said to be stable with 
respect to the functions $h and unstable in the opposite case. 

-In reality, according to this definition of stable and unstable 
motions, the general character will be preserved, at least with respect 
to the functions q5k, only by those theoretically unperturbed motions 
which are stable with respect to q$. The last circumstance does not mean 
that all motions, determined by the accepted laws, will turn out to be 
stable for any small perturbation forces and for arbitrRrllj small uer- 
turbations of the initial data. It means that these laws, due to the 
basic requirement of small deviations from the experimental data. cannot 
relr on anrthtng other than the motions which are stable in one or the 
other measure with respect to the observable functions $&. 
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#This proposltlon, which Is a simple consequence of the definition of 
stable unperturbed motions and of the requirement of small deviations 
between theory and experiment. and which refers more to the structure of 
our scientific knowledge, we shall call the postulate of stability and 
will accept it without reservation. It will not matter whether later on 
this postulate is confirmed or refuted; for the present it is interesting 
to see that consequences can be deduced from It., 

Further, repeating the statement of the problem of stability of a 
mechanical system, which was mentioned in the review of Paper [ 12 I, and 
writing out the same equations including the system (3.4). Chetaer gives 
a rigorous proof to the effect that in the case of stability in the first 
approximation of the unperturbed motions under consideration. the Poln- 
car6 variational equations have only zero characteristic numbers. The 
proof make8 use of the Invariant of equations (3.3) given by Poincare 

where el, . . . . e,,, ql, . . . . q* and fl’, 
arbitrary solutions of these :quatlons. 

. . . , -fI)*, qI’, . . . , qn’ are two 
as well a8 of the basic lemmas 

of Liapunov (2) on characteristic numbers. 

The assumption that the system (3.4) Is regular leads to the condition 
(3.5). In addition, assume that this system satisfies the requirement8 
of reducibility and that the corresponding linear transformation 

possesses the determinant which is constant and different from zero. 
Then, due to the Invariance of the characteristic numbers of the solu- 
tions of the system (3.4) under such a transformation and the well-known 
theorem of Ostrogradskii-Liouville, we shall obtain from (3.5) the 
necessary condition of stability in the form 

L=p- ajgo so 
ij hi ( ) j 

This condition expre8ses the fact that the sum of the characteristic 
numbers of the system (3.4) is equal to Zero. 

In the actual motion. let the material system be under the action of 
forces with the force function Ue, theoretically taken into account 
above, and subject to unknown perturbation forces which, however. are 
assumed to be potential forces admlttlng a force fun&Ion II. The actual 
field of forces Is then determined by the functlon VO + g. 

If the statement of the problem of stability for the actual unper- 
turbed motions, under the perturbations of the initial data only, Is 
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preserved In the same form as above In the theoretical field of force 

with the force function Va, then the necessary requirement for the 
stability in the first aDprOxi~tlO0. as, for eXamDle. iD the fOrW (3.81, 
will not be effectfre In the general case, since the function V. playing 

In the actual motion the role of Va, is not known (as also is n. Hor- 
ever, conditfons of stability can be found which do not depend expliclt- 
ly on the unknown function of the perturbation forces I, but will contain 
only the constant of integration h which has the independent physical 
meaning of the total energy. 

Let us begin from the requirement of stability in the form (3.8). 
assuming that the conditions for Its existence (reducibility and so on) 
are satisfied for the actual motionr. 

Introduce instead of V a new function 

where k is a constant, A a real function to be determined and i = d- 1. 
After simple calculations, using eqaations of the type (3.1) and the 
energy integral for the actual motions, the condition (3.8) assumes the 
form 

(3.9) 

This equation will not contain I If A Is determined by the equation 

which after Its separation into real and imaginary parts decomposes into 
two equations 

Equalities (3.10) determine the structure of the perturbation forces 
for which one of the stability conditions does not depend on these 

forces explicitly, but depends only by means of the energy constant /I. 
If conditions (3.10) are clatisfied, condition (3.9) assumes the form 

;& (gGg +2k2(U,+h)+=0 

Single-valued and continuous solations of Equations (3.11) for the 
function $ are admissible only for the eigenvalues of h. Consequently, 
also, the stability of the actual motions will take place only for these 



252 A ratvcy of tha aciantific morka of N.C. Chctarv 

values of the energy constant h. For the function U,, of the theoretical 
forces these values of h can be determined in principle from Equations 
(3.11). Let us quote in full this impartant part of the uaper [ 19 I : 

l 3ecause of this kind of effectiteness the method of solving our 
problem changes sharply to the opposite. Let us Imagine our previous 
material system and assume that It is subject to perturbation forces 
nith the force function I, determined by formulas (3.101. Knowing In 
advance the force function of the essential or theoretical forces Ue, TS 
can find the eigenvalues of the constant h In the differential equation 
(3.11). Let @ be a certain elgenfunatlon of this equstioD COrreSpODdiDg 

to the constant h. If now. in Equation (3.111, the function $ is replsced 
by a nes function S, determined by the formula 

then, separating the real and lmagllsry parts. this 
ante with the assumption about the structure of the 
decomposes into tro equations. The first one 

formula, in accord- 
perturbation forces, 

shors that S ~111 be a particular solution of the Hamilton-Jacobi equa- 
tion COrreSpOndiDg to the actual motions of the considered material 
systsm. The second, existing If this psrtioulsr solution S aDpears in 
the complete Jacobi integral Y for the actual motion, 

shows that tile necessary condition of stabflity 2~s = 0 is alsays 
satisfied. 

*If the actual motlons are not additionally constrained, then the 
possibility of obtaining stable motions outside of the solutions just 
found is not excluded. It is easy to observe that all stable actual 
motion8 which are not obtained by this method will have one general pro- 
perty, aamsly. for them the necessary condition of stability x K,= 0 ig 
not equlvslent to condition (3.81. 

.If. however, under these ciraamrtsnces the actual motions are such 
that the variational equation8 (3.4) are reducible by means of a sub- 
stitution rlth a constant deter8inart. then sccordiag to the vrevious 
analysis the possibly stable motions of such a system will be contained 
in the set of the obtained solutions. Of courae. the latter may cont8iD 
spurious or superfluous solutions shich can be discarded if one cossfders 
the nhole set of necessary condltioss for the stsbillty in the first 
approxiwtion. sDd does not restrict himself by ths slwle condition 



Analytical dynamicr 253 

in Paper [ Ig 1 is given the simplest example of a free material 
particle moving In the field of potential forces with the function V,,. 
The conditions (3.10) for the structure of the perturbation forces assuse 
the form 

and the condition (3.11) the form 

A4'+2h(Uo+h)$=O (3.12) 

I.e. it coincides rlth the well-known Schrodinger equation of quantum 
mechanics. The latter, In the given case, represents the relation. re- 
stricting the choice of the constants in the complete Jacobi integral. 

In the case of more conpllcated necessary conditions of stability 
K. = 0 (and not only z I( . = 0) and preserving the reducibility of Equa- 
tion (3.4). the problem if selecting stable actual motions reduces anew 
to theorems on the existence of regular eolutions $.(‘rl of certain 

systems of differential equations in partial derlva Ives having, however. c 
in this case. a considerably Bore complicated form. In the general case. 
when to the characteristic roots p, of the reduced amtem of different- 
ial equations obtained iron system (3.4). there correspond arbitrary 
elewktary divisors, the form of these equations Is 

a+ W) a+ .tar) 
+- + x k gfk 

(r = 1, . . ., n,; s = 1, . . ., k; j = 1, . . ., n) (3.13) 

where & is the number of groups of solutions, nr the nwber of solutions 
in a grow. corresponding to the root p,(n1 + n2 + . . . + nk = n), 
$(80) = 0, and Y is the function contained in the complete Hamilton- 
Jicobi integral and satisfying the equation 

The function I 

In the case of 
considerably. 

xgijgg =2(u,+W+h) 
1 j 

presupposes a certain structural definiteness. 

simple elementary divisors Equations (3.13) sisplffy 

The Paper concludes with au example and a discussion of the types of 
the solutions of equations of the form (3.11) for the motion of free 
particles. 

Pager CtO 1 ‘Stability and the classical laws., published by Chetaev 
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in 1936. is also similar in aim to the paper *On. stable trajectories of 
dynamlcs8. BY means of concrete laws of physics Chetaev illustrates the 
validity of the stability postulate, i.e. the necessity of recognizing 
the stability of one or the other type (in the sense of selecting func- 
tions which take part In experimental measurements, and the form of the 
perturbation forces) by virtue of the requirement of small deviations of 
the theory from the experiment. 

1. Consider the equilibrium of an isotropic continuous medium, assum- 
ing that the inner forces, developed as a result of Its deformation. are 
conservative. and that that part of them which cannot be taken into 
account (perturbation forces) is not of lower order than two with respect 
to the small deformations. Of what kind must these inner forces be if 
one starts with the postulate of stability? 

By virtue of Lagrange’s theorem on the stability of the equllibriua 
and its converse by Liapunov and Chetaev 133 1 , there 1s at every point 
of the medium a force function of the form 

u = - k’ (xla + sa’ + ~,a) + W (3.16) 

where XI, x3, x3 are the deviations of this point from the equlllbrlum 
position, and I is a function which with respect to these deviations is 
of the order greater than two. 

Thus, the force of elasticity will be defined In accordance with 
Rooke’s Law which has a good experimental foundation. 

‘It Is Interesting to note that Xooke’s Law does not 9orsess dynamical 
stability for arbitrarily small perturbation forces (the order of small- 
ness being larger than one). Therefore, from the point of view of the 
stability postulate, It becomes clear why serious objections have been 
raised to Rooke’s Law on the grounds of its Insufficiency In certain 
dynamical problems. [ 20 I. 

2. The behavior of the entropy S of a set of bodies, changing in a 
certain physical and chemical process according to the second law of 
thermodynamics, is characterized by its nondecrease. If S9 is its 
maxlmum. then 

dV 
x20 

where V = S- Se plays In this law the role of the Liapunov fumetlon In 
his basic theorem on the stability of motion. although here It Is lm- 
possible to give for the process a clear mechanical analogy. 

3. Conslder the last problem, which refers to the law of gravitation 
of Newton and is connected, due to Its origin, with the laws of Kepler. 
which in turn are based on the astronomical observations of Tycho de 
Brahe. 
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Prom the point of view of the Chetaev principle all three laws of 
Kepler must contain directly such elements of the planetErr motion which 

by necessity are stable in the theoretical law of gravitation of Newton. 

Let as quote in full the ooncludlng words, referring to this Idea. 

.Let us verify! The elements of the first law of Kepler (plane and 

the law of areas) are obviously stable not only in the law of Xerton but 

also for arbitrary central forces. In the problem of two bodies. If the 

particle under consideration describes, according to the Newtonian law, 

an elliptic trajectory. the motion will be stable with respect to the 

quant 10 

P 
‘-l+ecosq 

where p 8nd e denote, respectlvelr, the parameter and the eccentricltJ 
of the ellipse, described by the particle In the unperturbed iotlon. 
here r and + are the radius vector af the particle In the perturbed 

motion and the angle between this rdlue vector and its smallest value 

in the unperburbed motion. This proposition of Lia9unov PGeneral 
ProbleW, p. 1s) shows that In the second law Kepler also used stable 

elements. The fact that In the third law Kepler talks about stable ele- 
ments was established by Laplace. Lagrange and Poisson In the well-known 

theorem on the stability of the major semi-axes of elliptic orbits.. 

4. The optical-mechanical analogy. A large and very Important part of 

Chetsev’s work is connected with the lnvestlgatlon of the general prover- 

ties of the perturbed motions of mechanical systems In the neighborhood 

of a stable unperturbed motion. 

Paper i24 1 occupies an Important place In this field: It deals with 

the properties of the perturbed motions described by the variation81 

equations (2.2). 

tIere, a fundamental theorem Is estsbllshed to the effect that In the 

case of a stable unperturbed motion the varlatlonal equations (2.S)not 

only have all their chrrscteristic numbers equal to zero but are also re- 

duclble In the sense of Llapunov (2) and possess a definite quadratic 

Integral. 

These results permitted Chetaev to pave the war for the development 

of the optical-mechanlcal analogy which he completed In his papers [55, 

59, 61, 65 1. 

The importance of the optical-mechanical analogy in the development 

of classical mechanics la well-known. The analogy between the principles 
of Permat and Maupertuls. In particular the analogy between the wave 

theory of light by Hurgens and the motion of 8 conservative mechanical 
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system, played an Important role in analytical dynamics. According to 
Chetaev ‘... the roots of the beautiful results obtained in analytical 
dynamics after Lagrange are to be found in the analogy between mechanics 
and optics. For contemporary problems this analogy does not, in w 
opinion. play any lesser partg.* 

Chetaev has underlined that the analogy to the oscillatory process in 
physics must be sought in the small perturbed motions about a stable 
motion of a holonouic conservative dynamical system. Thus, in Paper 1611, 

it is said: mHamilton discovered the analogy between the rare optics of 
Huygens and the motion of a mechanical system, restricted by holonomic 
constraints and subject to the action of forces, admitting a force func- 

tion. This Important discovery determined for a century the progress of 
analytical dynamics”. 

These remarks illuminate Chetaev’s interests and the general trend of 
his investigations along the lines of the optical-mechanical analogy. 
Let us examine briefly the paper #On the continuation of the optical- 

mechanical analogy9 [ 61 1. 

Let us return to Equation (9.8) 

This equation is of the elliptic type since the gij are the coeffi- 
clents of a positive quadratic form which determines the vie viva T. 

BY virtue of the Hamilton-Jacobi equation the function Y satisfies 
the equation 

zgijz$=2(iJ +h) 
i j 

(4.1) 

Consider nor the twice differentiable function 

@ (- ht -+ V) 

Under the assumption that the above introduced necessary conditions 
of stability are satisfied, the function @will sstisfy the equation 

(4.2) 

l This quotation is taken from N.6. Chetaev’ s paper gDlalectical 

principle and exact natural science8 published in 1990 in the Ve’crtnik 

Kozonrkogo Fiziko-matem. Student. krurhko (lithographed). 
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‘This wave equation establishes the analogy between the mathematical 
theory of light by Cauchy and the stable motions of holonoaic conserv- 
ative systems.. 

The optical-mechanical analogy is fully investigated by Chetaev in 
the light of the theory of Lie groups. The basic idea is the coincidence 
of the transformation group of one phenomenon (oscillatory process of 
the propagation of light) with the transformation group of the other 
(perturbed motions near a stable motion of a mechanical system). 

B. llwory of Stability of Motion 

For convenience of exposition, Chetaev’s work on stability can be 
subdivided into the following sections: the problem of existence of 
stable equilibrium figures of rotating liquids; the general theorem on 
instability and the converse of the theorem of Lagrange; investigation 
of stability in the first approximation for a non-stationary motion; 
elaboration of effective methods for the construction of the Liapunov 
functions. 

5. Stable cquilibriun figures of rotating liquids. The works of Liapu- 
nov on the equilibrium figures of a rotating liquid and their stability 
contain a rigorous proof of the existence of new equilibrium figures uni- 
formly rotating about a certain axis, the liquid being assumed to gravi- 
tate according to the Newtonian law, and also the statement together with 
a solution of the stability problem of these figures. Liapunov proved 
the instability of pear-shaped figures. This refuted Darwin’s cosmogonical 
hypothesis on the development of an estinguished star through pear-shaped 
figures of equilibrium. After the works of Liapunov the problem of the 
development of an ideal extinguished star remained open. 

In Papers 13.4 I, Chetaev set himself the task of investigating a con- 
tinuous sequence of stable equilibrium figures of a homogeneous rotating 
liquid mass, subject to the action of the Newtonian gravitation forces, 
forces of radial compression toward the center of gravity with constant 
velocity ‘I, and constant pressure on the surface. 

First. he showed that the problem of finding the equilibrium figures 
of such a rotating liquid mass reduces to the solution of the functional 
equation 

s d:’ 0.3 
jP x + T (z2 -I- Y’) - z (99 + yS + 9) = con& ua (S,) (5.1) 

T 

where r is the volume of the liquid, St the free surface, A the distance 
between any two points (L, y, z) and (x’., y’., t’) of the liquid, f the 
constant of gravitation. w the angular velocity of rotation of the liquid 
and p the density. 
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Curther. Cbet8ev proved tb8t the elllprolds of revolution 8ud the 

three-8xi81 ellipsoids 88tlsfY Pqu8tlon (5.1) under certain restrictloss. 

gere. tbe 8xis of rot8tioa mst be shortest of the axes of the ellip8Oid. 

Applying the Baussian principle of le8st constrrint. Chetrev proved 

th8t under the action of the forbee 0r 8ttr8ctlon and radirl eo8pression 
the 8Bgal8r velocity 0r rot8tion 0r the liquid MS8 Ill the o&U81 Ch8Bge 

0r the equllibrivm figure is forced to v8w In the lesst r8y 88ong 811 

conceiv8ble l otions. Pros this it UnquestionrblJ fOliOus that iB the 

course or tl8e the 8~s or the liquid chlrngee its boundary figure of 

equilibriu8 in such 8 r8y th8t 0r 811 the posltions coasistent 81th the 

constmlnts the rrbsolute value 0r the 8ctu81 v8ristlon of the 808ent 0r 
inert18 0r the llpuld rith respect to its uis 0r rotstion Is the lerst. 

Consequeutlj, the 8CtU81 figure 0r eqslllbriu8 In 

cert8lB bifUrC8tioB point rlll be th8t for ubich the 

the 888s 

s 
(a2 + yz)dm 

8SSU8eLI 8 88XiUUB. 

the region of 8 

inert18 8oueut 0r 

In order to single oat 8 st8ble repuence 0r equilibria8 rigures 

Chet8ev 88tes u8e 0r the L8gr8uge theorem on st8billtP rben 8 force 

ru8cti0B exists 8ud 8dwts the proor suft8blJ ror the C8SB Under C.OB- 

sider8tion. 

ApplJiBg this theorem to the linerr 8~~rOIiUtioD. Chet88v e8t8blisbe8 

the distribution of strblllt~ snd iast8billtP in the seguenoe of ellip- 

sold81 figure8 or equillbriuu or 8 rot8ting bouogewous liquid. 

Further, stable figure8 8re sought rhich are derivrtlves of 8t8ble 

ellipsoids 0r revolution. 

As 118s wntioned above in connection with the problem of the equl- 

librim figure8 0r 8 rot8tlng lipaid. 8t the beginning 0r the prerent 

century 8eriou8 dirrerences 0r opinion 8rose between Lirpunov, Poincarg 

8Bd D8RiD 88 to the question of st8bilitJ 0r the pe8r-8hapsd figmes. 

The dispute 188 solved in r8vor of Li8pU8OV. 

Eouever. 8s Chet8ev polnted out in P8per 19 I, Liapunov's in- 

genioas wthod overlooks one delicate point still to be considered. As 

Is uell-knoun. Li8punov proposed to coa8ider 8 certrin linerr 8eQneece 

0r figure8 (f). dlrfering as little 88 desired rro8 the critic81 ellip- 

soid go of J8cobi. Sep8rrte fistwe f Of thin 8eQuence 8re COUDletelY 

determined by the ~81~48 0r 8 cert8in mrrueter a, 8ud those 0r them ror 
which certrin r~Otions L(a) vrnieh turn out to be euulllbriuu figures 

being the derivatives of the ellipsoid Bg. Bince the vrrious f-ii+tlre8 
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do not represent all geometrically possible figures which are near Be, 
then the question whether all the equilibrium figures which are deri- 

vatives of Be are among the f-figures of Liapunov is of the highest lm- 
portance. 

Paper [9 1 by Chetaev, which consists of five chapters is devoted to 
the solution of this difficult problem. 

In the first chapter are derived the basic nonlinear integral equa- 
tions for a variable which determines a figure of equilibrium which is 
near to the ellipsoid and has the same angular velocity of rotation as 
the ellipsoid. Chetaev uses here some results of Liapunov, hut obtains 
the basic equation in a form which Is slightly different from that of 
Liapunov and much simpler. 

The second chapter is devoted to the investigation of the problem of 
the distribution of the critical equilibrium figures in the sequence of 
the Jacobi ellipsoids. 

In the third chapter. the author proves that not every figure of 
equilibrium, being a derivative of the elllpsoldal figures. is among the 
f-figures of Llapunov. Because of the difficulties in applying the 
general method for the lnvestlgatlon of the ramification of the solutions 
of nonlinear Integral equations to the problem on the spreading of the 
equilibrium figures which are the derivatives of the ellipsoids. the 
author proposed a generalization of the Liapunov method, by means of 
which he then proved the above-rentioned assertion. 

In connection with this there arose the problem of the determination 
of the sequence of stable equilibrium figures. Chetaev Is concerned with 
this problem In the fourth chapter of his memoir. Irirst. he outllnes 
Liapunov’s theorem on the stability of the equlllbrium figures, accord- 
ing to which, if for a certain form C of the liquid the function 

assumes a maximum for the given value L of the moment of momentum, then 
this figure C is stable. 

For the case L f 0 Llapunov showed that it makes no sense to speak 
about the absolute maximum of the function n, if the liquid mass is 
subject to no additional restrictions. Chetaev Introduces such an addi- 
tional condition and proves that, if there exists a lower bound, which 
is not infinitely 8~11, for the masses of the separate bodies into 
which a certain homogeneous rrss of an incompressible liquid can be de- 
composed under the influence of the Newtonian forces of attraction and 
the centrifugal forces, then for this mass there exists at least one 
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bodx for rhlch II aeeumee its largest value, and, consequently, at least 
one stable equllibrlum figure. 

The fifth chapter Is devoted to the conelderaticn of 8tabillty of the 

equilibrium ffgures derived from ellipsoids. Chetaev proves here tro lm- 

portant general theorems on the number of real branches of the eqaillbrium 

curve of a mechanical system, passing through a bifurcation point, and 

on the change of stability. Particalar casea of these theorems were 

noticed in 1885 by Poincarg. 

In order to clarify the problem of the distribution of the stable 

branches of the equillhrlam figurer near a critical ellipsoid, the aathor 

applies these theorems and proves the existence of a stable sequence of 

equilibrfum figures, being the derlratlre of the critical MacLauria 

ellipsoid and expanding In the direction of large values for the angular 

velocity of rotation. The chapter coacludes rith a statement of the 

principal problem of stability of the Jacobi ellipsoids in the sense of 

Liapnaov. 

6. Gcnrral theorem on inrtebility und the convcrve of Lagranp’v 
throrcm. The other problem rhich attracted the attention of Chetaer at 

the beginning of his scientific activity uas the celebrated problea of 

the converse of the Lagrange theoren oa the strbfllty of the equilibria+ 

when the force function has a maxlmum~[ 11,16,17,22.48 1. 

AB is well-known. this theorem is as follous [27 1: ‘If at the equi- 

llbrlum position the force function has an isolated maximu% then such 

an equilibrium position Is stable.. By the convene of the Lagrange 

theorem is understood the affirmative aabuer to the follorlng question: 
gill the equilibrium position be unstable If the force function Is not 

a maximum at this poclition? 

In such a formulation the problem turns out to be very difficult, and 

before Chetaev’s investigations it l as solved only in special simple 
cases. In particular, Lfapunov first investigated (2.0 25) the case 

There the expansion of the force function II In the nelghborhood of the 

equillbrlam position q, = 0 has the form II = fl, + U,+ 1 + . . . (Urn being 
a form of degree a > 2) and the sign of the force function [I for l = 2 

is determlned by the terma of the second order. 

Liapunov also shored by his direct method (2, Q 16, Example 2) that 
in each case rhere at the equllibrlum position the force fuoctioa a8sIw8 

a minimum and this can he deter8fned $rom the coaalderatioa of the 

totality of terms of the louest order In the expaneloa of the increment 

of this function in terms of the pouers of the increment8 of the co- 

ordinates, ia8tabillty of the equllibr,tum fahes place. This problem was 
also investigated by other authors (Haduard, Painlev&. 
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In order to solve the problem of the converse of the Lagrange theOreD. 
Chetaer first had to develop the direct method of Llapnnov. Re gave 8 
general theorem of Instability based on the ideas of the method of 
Llapunov functions. This theorem turned out to be very useful for the 
solution of the concrete mechanical problem described. Horever. the in- 

portance of the general theorem on InstabIlity as given by Chetaev turn- 
ed out to be considerably rider. This theorem can be considered as the 
most general and universal criterion of instability. 

The original formulation of the theorem [ 11 ] u8s given in 1930. A 

more general formulation and a modification of the theorem uere given in 
Paper [ 16 1. An expanded proof for the general criteria of instability 

is given in Paper 123 1. 

The theorem on instability Is as follow [ 16,17 1 : 

If the differential equations of perturbed motion are such that (i) 
for a certain function V, rhlch admits an Infinitely small upper bound, 
there exists 8 region In which Vv’.> 0. (ii) If In this region (Vv’.> 0) 
for certain values of the quantities zl, numerically small as desired, 
it is possible to single out a region Into which a certain function 
I > 0 rhlch vanishes on the boundary, i.e. I = 0, 8ssumes for its tot81 
derivative nlth respect to the time p’.values which are all of the same 

sign, then the unperturbed motion Is unstable. 

If the region Vr.> 0 constdered in the theorem is bounded by the sur- 
face V= 0 and besides V’.> 0 holds, then the function V can be taken 
for 1. 

As the function I also Y’.can be taken. Then re obtain the original 
formulation of the theorem on instability as given in the Paper [ 11 I. 

These interesting crlterl8 of instability gave rise to a certain 
amount of debate. At first. It u8s thought, incorrectly, that the 
theorem did not hold in the large. It should be pointed out that the 
original formulations uere given by Chetaev in the shortest possible 
form and uere designed for the lnvestigatlon of those cases of the euua- 
tlons of perturbed motion for rhich misunderstandings in the interpreta- 
tion of sucll concepts as the regions VV’. > 0, V > 0, I > 0 and so on 
vere almost excluded. 

Later, in his book 137 1 and in Psper 148 1 , Chetaev explained hou, in 
the general case, the terms used in the formulation of his criterion 
should be understood. 

In particular, in Paper 148 I, be pointed out that the regions V > 0. 
v’.> 0 and so on in the neighborhood of the point z* = 0 should be con- 
sidered on the closed time Interval [ tO, 001. 
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The formulation of Cheteev’s instability theorem which has been most 
widely adopted is that given in the book [ 37.48 1 . If one does not in- 
troduce conditions for the existence of the regfon V’.> 0 on the closed 
interval 1 to, m 1 , it can be formulated in the following ney [ 37.48 1: 

The function I(xl, . . . , x”, t) will be celled positive-definite in 
the region V > 0 if it can vanish in this region only on the boundary 
V E 0. end if for en arbitrary positive number 6, no matter how sm811, 
there exlets such 8 positive number 1 f 0 that for all x8 satisfying the 
condition V > c and all t > to the inequality II > I holds. 

Thaorcm. If the different181 equations of the perturbed motion are 
such that a function V can be found, bounded in the region V > 0 8nd 
existing for all t > t0 end for arbitrarily small absolute values of the 
variables I,, whose de&vetlve V’* by virtue of 
positive-definite in the region V > 0, then the 
stable. 

The converse of this theorem has been proved 
versality established. 

these equations, is 
unperturbed motion is un- 

end, thus, its uni- 

In Paper 111 1 Cheteev proposed e solution for the converse of the 
Lagrange theorem using the Kronecker charecteristias. The complexity of 
this solution Induced him to look for a more elementerg solution. The 
results obtained by Cheteev in Paper [l? 1 can be reduced to the follow- 
ing: 

Let the system be described by differential equations in the Lagrange 
form 

d> = 
dt 5 (8 = i, . . ., k) 

rhe re 

holomorphic functions of xI vanishing et the equilibrium 
= 0. and the expansion of II begins with terms of the order 

not lower then two. If the force function II is 8 form tlB end can esanme 
positive velaes, then the equilibrium is unstable. 

The proof is baaed on the iavestlgatlon of the behrvlor of the func- 
tion 

V H=P-2U 

in a neighborhood of the point x, = 0. Under the conditions of the 
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theorem this function satisfies the conditions of the Instability theorem. 

If the force function II = Ua + . . . has a minimum and this can be deter- 

mined by the lowest order terms, then the equilibrium I,= 0 Is unstable. 

In Paper [23 ] Chetaev gave a new proof for the converse of the Lag- 
range theorem in the general case when the force function II Is analytic 
and does not possess a maximum at the isolated equilibrium position. An 
elementary proof was given in this paper only for the case where the 
function U is a homogeneous function of degree D or U = Ua + U,, 1 + . . . 

and the positive sign of the functions V = U, + Urn+ 1 + . . . and dm + 

(m+ llU,+, + . . . is determined by the terms of the lowest order Urn 
without any necessity to consider terms of higher orders. It should be 
noted that the first of the cases considered appears now in text books. 

Elementary proofs (in the sense of Chetaev’s definition) for other 
more complicated and subtle cases of the converse of the Lagrange theorem 

were given in Paper 148 1. 

Here, the following particular cases are considered: 

(al The function II= Um + Urn+ 1 + . . . + I$_ 1 + UC + Uh+ 1 + . . . . 

where the forms Um, . . . , Uh_ 1 are constantly negative, the forms Uk+ 1, 

Uk+2. .** are constantly positive while the form uk Is of variable sign. 
For sufficiently small numerical values of the q, the function Urn+ 
II a+ 1 + . . . + ok_ 1 + uk can be made positive. In this case the instabil- 
ity of the point x8 = 0 Is proved by means of the function 

v= - H zp,q, (6.9 

which satisfies the conditions of Chetaev’s instability theorem. 

(b) The equilibrium position g, = 0 is unstable if 

U = - ubq? + (4 + b) ma’ - qa’ (b > 4 > 0) 

The problem is solved by aeans of the consideration of the function 

P=--iY qlP*+$QIPn+qaPa+.. 
( - + QPk) 

(c) The equilibrium position q, = 0 is unstable if 

U= - gW + (4 + b) w2 - qrs (b > 4 > 0) 

The problem is solved by means of the function (6.1). 

(dl The following conditions are satisfied: 

(11 for arbitrarily small numerical values of the q, such that q12 + 
. . . + qm2 < 1 there exists a certain region C in which U > 0; 
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(Ii) there exist certain functions f,(ql. . . . , q,,). nbicb together 
ritb their first partial derivatives are continuous in C rbicb vanish for 
tbe zero values of the arguments and which are such that all tbe princlp- 
al diagonal minors of the functional determinant 

II II g!?+$ 
r 6 

(s,r = I,..-,n) 

are bounded from below by positive numbers of the region C, and the func- 
tion 

x$. 
8 

Is positive-definite in the region C. In such a case the equilibrium 
position q, t 0 is unstable. The problem is solved by means of consider- 
ation of function (6.1). 

7. Invc8tigation of stability in the firat approximation for a noa- 
stationary motion. A large part of Cbetaev’s rorks is devoted to invest- 
igations in this field [ 30.35.31.43.68.63 1. These rorks contain, in 
particular, important estimates for the solutions of the system of linear 
approximation rhlcb have found an extensive practical application. 

Among tbe papers of this section Papers [30,63 1 should be singled out, 
in rhicb the theorems of stability and instability are proved in the 
first approximation for nonstationary systems. As is sell-know. Liapunov 
established the fundamental theorem of stability by the first approxlma- 
tlon for regular systems (2, 4 12,131. 

In Paper 1301 Cbetaev proves analogous theorems of instability by 
the first approximation. .If the system of differential equations in the 
first approximation is regular and if only one among its cbaracterlstic 
numbers is negative, then the unperturbed motion Is unstable. If the 
system In tbe first approximation is not regular, then, introducing s = 

x1+ . . . +xn, rhere the Xi are the characteristic numbers of the normal 
system of Its solutions. se have s + g = = u QL is the characteristic 
number of the function l/ b 0-Y 01. Further, if only one of the cbarac- 
teristlc numbers Ai is negative and less than (- 01. then the unperturb- 
ed motion is unstable.. 

The proofs of these theorems are based on the properties of the Liapu- 
nov characteristic numbers. 

Later, In Paper [ 63 I, Chetaev gave ner proofs for his own and 
Llapunov’s theorems on stability by tbe first approximation, using the 
direct n etbod of Liapunov. 

In Paper 135 I is proved a theorem which appears in many text-books on 
the theory of stability. namely. on tbe smallest characteristic number 
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of a nonstationary system, the coefficients Pii of the linear approxl- 
sation of which approach certain limits c . . as t + + w . 

LJ 

If, as t increases indefinitely, the coefficients pii tend to de- 
finite limits C. ., 
coincides with t ‘i, 

then the lowest characteristic number of the system 
e lowest characteristic number of the limit system. 

As a consequence of the theorem the folloving criterion of stability 
by the first approximation is obtained: 

If the elements of the matrix Ilcijll are such that the real parts of 
the roots of the characteristic equation 11~. . - Si .A 11 = 0 are negatfve, 
then the unperturbed motion xI = 0 Is asymp&ical Y stable. i 

In the same paper a more general case of a system with variable co- 
efficients is also considered, and a method for the construction of 
Liapunov functions in the form of a quadratic form rith variable coeffi- 
cients is demonstrated. 

This paper can be considered as a source of works on the estimation 
of the velocity of damping of the transition process in terms of the 
estimates of Liapunov’s quadratic functions V(t, xl, . . . . x,). The cri- 
terion given in Paper [36 I consists of the following: 

For t > to let the equation 

A (9 = II Prr -$,AII=O 

have roots A,. . . . . Aa for which none of the expressions 81X1 + . . . + 

5A8 vanishes for ~1 + . . . + a,, = 2. Then, by a well-known theorem of 
Llapunov there exists a form V = x arr( t)x,x,, which satisfies the equa- 
tion in the partial derivatives 

Assume that for all t > t the diagonal minors DI, . . . , Dn of the dls- 
crlminant D = Ilda,Jdt + Ssroll are not smaller than a certain positive 
number. Then, according to the Sylvester criterion, the derivative dV/dt 

by virtue of the initial system will be a positive-defialte function. 
Here the boundedness of the derivatives da,,/dt h assumed. On these 
assumptions, if V is negative-definite, stabjlity takes place. Moreover. 
If V assumes an infinitely small upper bound, asymptotic stability takes 
place. If, however, V admits an infinitely small upper bound and can 
assume negative values, then Instability takes place. 

In Paper 143 1 the problem of stability of the solutions of a linear 
nonstationary system of equations is also considered. The basis of the 
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method, described in this paper for the construction of the Lispunov 
function V(r, t), is the following concept: if we denote the lnltial 
conditions by xske, generating for t = to the set of the linearly inde- 
pendent solutions xsk(t)(t > to), then the quadratic form V(r, t), satis- 
fying the conditions v[ r,k(t), tl = XskO for s = 1, . . . , n; t > to will 
obviously satisfy the condition dV/dt = 0. If this form turns out to be 
positive-definite, then by virtue of the Liapunov theorem the solution 
S$ = 0 will be stable. In Paper 143 1 Chetaev justifies the possibility 
of calculating the coefficients OS,(t) of the form V(X, t) by the method 
of successive approximations, gives the corresponding formulas and dls- 
cusses the effectiveness of the proposed method of Investigation. 

8. Effective methods for the construction of the Liopanov functions. 

In a series of papers on the application of the method of Liapunov func- 
tions to the problems of stability Chetaev proved the effectiveness of 
this method and also justified the possibility of estimating the pro- 
perties of the transition process in the system. Here, Chetaev emphasized 
the fact that for a correct selection of the parameters of the system 
securing the optimal properties for this system, methods based on the 
calculation of the integral estimates for the separate trajectories 
corresponding to the chosen Initial conditions, prove to be insufficient 
and may even lead to considerable errors. Paper 147 I aimed to show the 
inconsistency of the Integral estimates for the separate perturbed tra- 
jectories for the complete characteriaation of the optimal properties of 
linear systems, and to show how true estimates can be arrived at by 
Liapunov method. The paper considered a linear asymptotically stable 
system described by the equations 

On the basis of estlaates for the largest and smallest values of the 
Liapunov function V as a quadratic form and its total derivative dV/dt 

by virtue of system (6.1), an estimate is made on the basis of the 
sphere of radius one from the above, for the transition time of an arbi- 
trary perturbed trajectory of system (8.1). beginning on a sphere of 
given radius A > 0 and crossing into a previously determined a small 
sphere, of radius c > 0. Since these estimates are determined by the 
eigenvalues of the matrices of the form V and its derivative dV/dt. and 
the relations between these eigenvalues are determined by the coefficients 
0.. of system (8.1). then by ‘the same token a certain guidin6 rule for 
& selection of the parameters of system (8.1) Is obtained, which 

guarantee Its greatest effectiveness. 

It should be noticed that the significance of this paver falls out- 
side the framework of the concrete problem consldered in the given Paper. 
In fact, the general considerations on which tbe method of estimates is 
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based are obviously applicable to more general cases, namely, when a 
Llapunov function can be constructed and a connection can be effectively 

observed between the estimates of the properties (positive-definiteness, 
upper boundedness) of this function and Its total derivative (estimation 
of negative definiteness) and the parameters of the system under con- 
sideration. In addition, there are some very fruitful observations on the 
study of the properties of the system by the simultaneous study of the 
changes in Its properties and in the properties of the corresponding 

Liapunov function as the parameters vary. 

The method of estimating the properties of linear systems by means of 
quadratic Liapunov functions has been widely adopted, and a series of ln- 
vestlgations have resulted in useful and effective estimates for the 

velocity of damping of the transition process In nonstationary linear and 
nonlinear systems. 

9. Wonlinear systems for rhich the problem of stability can be solved 
correctly by sufficiently simple approximate methods are called ‘rough’ 
by Chetaev. A system of this kind is considered in the note 164 I, the 

results of rhich are immediately related to Paper 135 1. 

Let the system of differential eouatlons have the form 

rhere the cSr 
for x1* + 

are constants, f,, 
. . . + ZnQ A, t > to. 

bounded real functions of xl, . . . , x,, t 

If the auxiliary system of equations 

satisfies the condition that the roots A, of the equation 11 clr - 8*$ II-0 
are such that for arbitrary non-negative integers l L we have ~~(1 + . . . 
+ a&a f 0 when q + . . . + I, = 2, then the virtue of the Llapunov theorem 
the equation in partial derivatives 

.I;%g (c,p1+ * ..+ c,,qJ = - (x12+ . ..+ ln") = u (a...,z,) 

determines uniquely the quadratic form 

(9.3) 

For numerically small E > 0 and a small p > 0 the derivative dV/dt, 
by virtue of Eauation (9.11, will satisfy the condition 
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dv 
-‘dt - p (xl* + . . . + 2;;“) = 2 h srxs~r > 0 for Q+...+z~* > 0 

8. r 

Thus, the asymptotic stability or instability of the unperturbed 
motion is determined by the constants cCr. The quantities A and c. for 
which such a correspondence betneen the systems (9.1) and (9.2) exists, 
are determined by the Inequalities of Sylvester with respect to the fore 

Cbetaer points out the possibility of varying the estimates for the 
numbers c and A rbicb can be changed on account of the variation of the 
form &xl, . . . . rs) on the right-band side of (9.31, and, by the same 
token, of obtaining for the optimal selection of Cl the widest estimates. 

Ia the second part of the paper, Cbetaev gives concrete estimates for 
the largest and smallest deviations of the perturbed variables. These 
estimates have been ridely used In practical calculations. In particular. 
the estimate 

(9.4) 

is given for the square of the radius of the sphere, into rbicb at the 
instant t the point in the perturbed motion x,(t) will enter under the 
initial condition ~1~’ + . . . + xn,,3= c for t > t,, r; 0. This estitlrte 
generalizes to the case of quasi-linear rough systems the esti8ate for 
the velocity of damping of the transition process in linear systems ob- 
tained earlier by Cbetaev in Paper 147 1. In the inequality (9.41 the 
quantities K~ and ILL denote the largest and the smallest elgenvalues of 
the quadratic form determining the function V. f’ is a suffloiently sDal1 
positlve constant and A’ is the largest root of the equation 

Here dV/dt denotes the derivative of the Liapunov function calculated 
by virtue of system (9.1). 

10. Concluding this survey of the investigations of Chetaev into 
stability, it Is necessary to empbasise the iwortanoe of his monograph 
“Stability of motion. E 37.33 1. 

This small book contains an lnvestlgation into the stability of MtiOn 
of mechanical systems with a finite number of degrees of freedom. These 
investigations, rblcb uere initiated by the CXUSSI~S~ WOW of LitPull~~, 

and continued by the scholars of our country, coneist of the SYSte8StiC 

applfcation of Liapunov’s second method. Cbetaev achieved important 
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results in this field. 

In this monograph, Chetaev does not attempt a complete exposition of 
all the achievements in the field, but confines himself to those invest- 
igations which have the greatest value in application. 

Without enlarging the book, Chetaev managed to include in the second 
edition 152 ] new theoretical results as well as a series of new problems 
illustrating the theoretical results. 

Chetaev emphasizes the vital fact that In the definition of stability 
Liapunov used the concept of number and not the concept of an infinitely 
small quantity. 

This fact permits the successful application of Liapunov’s methods to 
the solution of applied problems on stability which arise with the devel- 
opment of technology and physics. 

The author draws attention to the method useful in practical applica- 
tion, proposed by Liapunov in the proof of his theorem for ffnding the 
dimensions of the region of the initial perturbations provided an arbi- 
trary positive number 6 is given, which determines the region of the 
phase space, inside which the trajectories of the perturbed motion of the 
system must lie. 

In this book a condition for asymptotic stability is proposed which 
Is somewhat more general than the condition corresponding to the Liapu- 
nov theorem. 

The influence of perturbation forces on the equilibrium is examined. 
Theorems of Kelvin about the influence of dissipative and gyroscopic 
forces on stability are strongly proved. The Important concepts of secular 
and temporal stability introduced by Kelvin are explained. 

The established possibility of estimating the characteristic numbers 
by means of averaging the coefficients has great significance for 
practical calculations. 

Chetaev attached great significance to the correct statement of the 
problem of stability. As a model of the statement he considered the 
formulation of the stability problem given by Liapunov. Also. Chetaev 
always paid great attention to the selection of those variables with 
respect to which the stability is to be Investigated. Here it is neces- 
sary to point out that Ignorance of this fact sometimes leads to the con- 
clusion that stability problems which can be covered by the concepts of 

Lfapunov’s stability theory are considered by some investigators as fall- 
ing completely outside the framework of this theory. For example, the 
majority of cases which are of interest in applications of the so-called 
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orbital stability can be covered by Liapunov’s definition of stability 
(a classical example is the motion of a particle in the field of central 
Newtonian forces (2)) provided that the variables are properly selected. 

C. Rorks on Qualitative methods in Analysis 

One of Chetaev’s first works on the qualitative theory of differential 
equations was his proof of the general criterion of stability of motion 
in the sense of Poisson. 

One criterion of stability in the sense of Poisson was indicated by 
Poincar6. This criterion required the invariance of the volume of a 
certain set I in the motion along the trajectories of the system. In his 
Papers 17.8 1, Chetaev frees himself from the requirement of the invari- 
ance of the volume and proves criteria for periodic functions X, with 
respect to time. 

ii. In Chetaev’s works analytical methods are developed for the in- 
vestigation of the behavior of the qualitative picture of the trajec- 
tories of dynamical systems and, in particular, methods which originate 
in the problems of the change of this qualitative picture as the para- 
meters of the system vary continuously. 

Here must be mentioned problems on the theory of bifurcation of equi- 
librium which are closely connected with the problems of stability and 
instability of equilibrium. A series of papers connected with these 
problems is devoted to the theory of the Kronecker characteristics [13. 
15.18.22.24 1 . 

By the term “Kronecker characteristic” in Chetaev’s papers is under- 
stood a numerical characteristic of a set of n + 1 functions FO(x,, . . . . 

x,), . . ., Fn(xl, . . . . x,). Let the functions Fe, . . ., Fn be single-valued, 
bounded. continuous together with their first order partial derivatives 
F jk = dFj/dxk. and not vanishing simultaneously at any point (x,, . . ..x.) 
of the space. Any system of equations Fe = 0 obtained from any n func- 
tions Fe of such a system has only a finite number of roots, which in 
the space xl, . . . , zs are represented by certain isolated simple point8. 

Then the Kronecker characteristic x(FO, F1. . . . . F,,) can be defined 
by the equality 

x (F,, - - . , F,) = 2 sign Ar Vk < 0) (11.1) 

Fk 

where Ar, is the minor corresponding to the element Fh in the first colwn 
of the determinant 
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Fo FM. . . F,, 
D= F1 FIZ. . . FE,, 

. . . . . I , . . 

Fn Fl, * * * Fm 

and the sumaation on the right-hand side of the equality (11.1) is 
carried out over the roots lying in the region Fk < 0 of the system of 
equations F, = O(a f ic). 

In Paper 113 I Chetaev gave a theorem justifying a method proposed by 
him for the calculation of the characteristics by means of variation of 
the functions. 

This method consists of a continuous variation of the functions of 
the given system Fo, . . . . F, to a system of new functions for which the 
characteristic can be more easily calculated, and in the counting of the 
losses and gains of units of the characteristic in such a transformation. 

Varying continuously the functions FO, . . . . F,, the characteristic 
then, and only then, undergoes a change when all the functions vanish at 
any one of the ‘transition points8 5’. 

Assume that we have a single Parameter x,,. In the space %a, %l, . . . . 
x,, the system of equations F0 = 0, . . . . 
points [‘. 

F,, = 0 determines the transition 

If to the initial system of functions corresponds the value of the 
parameter x0 = a and to the final system x a = /3. and if the parameter x0 
varies monotonically, then the difference betneen the corresponding 
characteristics is equal to the sum of the characters of the transition 
points 

xatFo, . . . t “J - xp (PO* , . . J,,) =21xti;~) 
k 

This formula permits us to determine the difference between the 
characteristics of two arbitrary systems of functions. The proof, for 
example, given by Chetaev of Poincar&‘s theorem on the parity of charac- 
teristics serves as an application of this theorem. 

Paper 122 1 is a systematic survey of numerous modifications and 
basic applications of this theory. 

In the first chapter are given the definitions of the characteristics 
and the general theorems of Kronecker. The contents of the second chapter 
consist of Chetaev’s theorems on the calculation of the characteristics 
113 1. The third chapter is devoted to the sources of the characteristic 
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theory, i.e. to the theorems on the separation of roots. In the fourth 
chapter, the theory of characteristics is applied to problems connected 
with Poincar@s work vOn curves, defined by differential equations’. In 
the fifth and last chapter Chetaev is concerned with integral expressions 
of the characteristics. 

Chetaev indicated the application of the theory of characteristics to 
the proofs of various theorems of mathematics (part of which are given 

in the form of problems in each chapter). In this way can be proved, for 
example, Oauss’ theorem on the number of complex roots of a polynomial, 
Brouwer’s theorem on the fixed points of a continuous mapping of a 
sphere, the algebraic theorems of Sturm and Hurwitz. and the topological 
theorems of Euler, Poincark. Hopf and others. 

In Papers [ 15.18,24 1 the problem of how far the method of Kronecker’s 
characteristics permits us to extend the solution of the problems In the 
theory of stability is Investigated. In Paper 115 1 the equations of the 

perturbed motion are considered 

dX *--x -- 
dt 

s (21,. . .I x,* t) (s = 1,. . ., n) (11.2) 

It IS shown how the definition of stability according to Llapunov can 
be expressed in terms of the theory of the Kronecher cahracteristics. 
The unperturbed motion x8 = 0 is stable in the sense of Liapanov if for 
any number L > 0 there exists a number t > 0 such that the characteristic 

xt of the system of functions 

Fo(%...r 2; ,=.i z+L, Fi (21, . . ., zn) = zi -xi (t) [,(i = 1.. . .) n) 

i=l 

where the Xi(t) are the motions described by the system (11.2) satisfy 
the equality xt = 1 for t > to provided that the perturbations Lie for 
t = to satisfy the condition 

xt, (i zi” - e* Zl - XlO. . . ., z*--xno 
> 

= 1 
i=l 

In the opposite case the motion is unstable. 

Making use of the formula in Paper [13 I mentioned above, it is shown 

how the variation of xt can be expressed in terms of the Kronecker 
characteristic of a certain new system of functions and how the basic 
theorems of the direct method of Liapunov can be proved by means of the 
Kronecker characteristics. Thus, in the case of Liapunov’s first theorem 
of stability. the variation of the characteristic xt of the system of 

functions 
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F* (2) s= v (a.. . .) Zn) - c, F, (z)i = zi - xi (t) (i = 1,. . ., n) 

(V is the Liapunov function) as t changes is given according to the above 

formula by 

k -Xt = c sing V’ (11.3) 
k 

where the summation is carried out over the points tk for which Fj = 0 

(j = 0, 1, . . . . n), and t varies from t0 to the instant under consider- 

ation. If I xi0 ) E IF0 < 0 1, then xtq = 1 and because of V’ 4 0 we have 

xto - xt 
= 0, i.e. xt = 1. This proves Liapunov’s theorem. Analogously, 

in terms of the Rronecker characteristics, Chetaev’s general theorem of 
instability can be proved. It must be mentioned that in this paper 

Chetaev also considers the converse problem of his inStabilitY theorem 

and indicates a process of constructing a sequence of functions Vk in 

the region VVk’ > 0 for which there exist points in sufficiently small 

neighborhoods IK, 1 < f k of the unperturbed iItOtiOA as f k + 0. 

In Paper [18 1 Chetaev clarifies the algebraic nature of the Liapunov 

method IA the theory of stability of motion. and shows how the Condition8 

of stability of motion, expressed IA terms of the Kronecker characteris- 

tics can be connected with the problems of separating the real roots of 

algebraic equations. 

Let the equations of the perturbed motion have the form (11.2). where 

X. are holomorphic functions of x8, the coefficients being COAt~AUOU8 

fUACtiOAS Of time t, aAd X,(0. . . . . 0, tl = 0. 

Assume that there exists a positive-definite function 

The region of stability is assumed to be defined br the iAeQUditY 

w (4 ==G c (C = COASt, C > 0) (1L4) 

Assume that for t = to the initial values x,q are selected in the 

region (11.4) aAd that for t Z to the function Vf Xi(xtql t), t] is de- 

AOted by f(t). If, further, QZly, t) denotes a function which, by means 
of the inequality @y. t) < 0. defines a region bounded by the contour 

t = tO, t= T, y=- c-c, y=-r, then, under the condition 

9x(@, Yf’t f)=O 

the motion under consideration x~(L~~, t) will remain in the region 

(11.4) for t 6 (to, T), i.e. it will be stable In the large (I < e).on 

the finite interval of the time t,, < t < T. :f. however, x(ehr Yf’, f>> 0, 
then in the mOtiOA during the time interval from to to T the fUQCtiOA V 
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assumes the value c at least once. Also, a sequence of successive de- 
rlvat ives f’ v) of the function can be considered, which are obtained by 
virtue of the equations of the perturbed motion (11.2). and the Kronecker 
characterist ice ~0, yf’ k-‘1), f(‘))+The basic contents of the paper con- 
sist of the following: Chetaev shows that, If for a certain function V 
by virtue of the differential equations (11.2) the sequence f, f’. . . . . 
f’k’ can be constructed, which in analogy with the well-known algebraic 
methods he calls a sequence of Budan, and if 

x (@,. Yf W-l), f(k)) = 0 

then, on the basis of investigating this sequence, we can make co~lu- 
sions about the stability of the unperturbed motion. The argument is 
based on the connection between the value of the Kronecker characteristic 
x and the number of the losses in the change of the sign in the Budan 
sequence when passing from t,, to T. In the problem under consideration 
this permits us to estimate the number of roots of V- c = 0 in the in- 
terval [t,, Tl and, consequently, in the case of the absence of the 
roots, to draw conclusions about the stability of the unperturbed motion. 
The unperturbed motion is stable if the number of changes of the sign in 
the Budan sequence when passing from to to tl( tl 4 T) Is for each such 
value tl either a negative number or zero or an even positive number. 

At the end of Paper [18 ] Chetaev points out the possibility of form- 
ulating theorems analogous to the Liapnnov theorem and corresponding to 
more general cases of the Budan sequence f, f’, . . . , f”‘. 

In Paper [ 24 1 Chetaev indicates the possibility of generalization of 
a problem, connected with the problem of the center and considered 
earlier by Poincar6, Liapunov and Birkhoff. 

12. In Paper 158 1 Cbetaev shows that the estimation problems of 
approximate integration have much in common with the problems of stabil- 
ity of motion. On the basis of this he develops the method of Liapunov 
functions for its application to the problem of deducing the above esti- 
mates. He considers the system of differential equations (11.2). where 
the X,are holomorphic functions of the real variables x1, . . . . x, in a 
certain region D for all values of time t. bssume that by a certain method 
of approximate integration an approximate solution. 

2‘ = u, (t) (8 = 1, . . .) n) (12.1) 

of Equations (11.2) Is obtained which is to be compared with the true 
solution X, = u,(t) + 5,. To estimate the differences 6. Chetaev makes 

use of the A, A- estimate introduced by him in the theory of StabilitF. 
Given the positive constants A, A. the approximate solution (12.1) has 
the A, X-estimate if, for the laitlal deviations tlo. . . . . en0 satisfying 
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the inequality tla2 + . . . + (,,,* 4 X for every t larger than to by virtue 

or Equations (11.2). the condition 

Els+*.*+5*‘<A 

is satisi’ied. 

In order to deduce the A. X-estimate Cbetaev, as in the case of’ 
stability problems, considers the system of equations ror the perturbed 
mot ion 

corresponding to the deviations (.perturbations*) 6, of the approximate 
solution u,(t) from the actual solution x,(t). and the system of equa- 
tions for the first approximation 

d5, - =P‘r(t)Zl+“‘+P‘n(t)Sn 
dt 

which he uses for the construction of a quadratic Liapunov function 
Y(t. fl. . . . . en). Assume that the coeti’icients p,k are such that there 
exists a Liapunov iunction which admits an infinitely small upper bound, 
Is negative-definite and the inequalities 

hold ror all t > to in the region [12 + . . . + c,,’ 5 A. Denote by 2 the 
greatest lorer bound of 1 I’] on the sphere [I2 + . . . + [a2 = A. If Inside 
the sphere (12 + . . . + if 2 < x the Inequality 1 VI < 1 holds and in the 
region A < t12 + . . . + [:a G A the inequalities 1 f, I S A hold, then the 
approximation a,(t) has the A, A-estimate. The proof of this proposition 
is deduced trom the results of 137 I, referring to the estimates of the 
region of admissible initial deviations, by means of Liapunov functions. 
the latter being quadratic forms. 

Two examples are also considered. As is alrays the case with Chetaev’s 
vorks, besides the fact that these examples illustrate in concrete form 
the general methods of the author, they also have an Independent interest. 
In the first example is discussed the possibility of replacing the difrer- 
ential equation of the nth order 

(12.2) 

by the approximate equation of the (n- 1)th order 
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P-5 
a1 - 

dt*-' 
+...+a,x=o 

obtained from (12.2) by dropping the ‘inertia” term aodnx/dtn. where au 
is small in comparison with the remaining coefficients. Chetaev indicates 
the possibility of obtaining the A. A-estimate provided that 

possesses roots with negative real parts. By the same token, in the case 
of the given example, Chetaev actually demonstrated a device for invest- 
igating, by the method of Liapunov, problems of the behavior of solutions 
of a linear equation with a small parameter in the term containing the 
highest order derivative. 

In the second example Chetaev demonstrated the estimation method for 
the approximate solution of the equation dx/dt = Xlr, t). obtained by a 
selection of the solution r(t) in the form of a linear expansion 

a&9(x) + al&(r) + . . . in terms of the functions h(t). $l(t). . . . of a 
certain family glven in advance, and made important observations about 
this method. 

In Paper 139 the extension of the d’dlembert method of integrating 
linear differential equations with constant coefficients to systems of 
linear equations is described. 

D. Applied Problems 

Applied problems always occupied a central position in Chetaev’s work. 

In Paper [lo 1 Chetaev applied the Liapunov theory of stability to 
the solution of the problem of lateral stability of an airplane. He ob- 
tained sufficient conditions for stability. In the monograph [3’l 1 he 
considered the problem of stability of a rectilinear flight of a neutral 
airplane with respect to longitudinal motions. 

A number of investigations have been concerned with the problem of 
stability of the rotating motion of projectiles. Yaievskli was the first 
who applied approximate analysis and obtained in 1865 the well-known. and 
in some sense, necessary condition for the stability of the rotating 
motion of a projectile In flat trajectories. 

In Papers [28.38,57 I Chetaev succeeded in solving the problem of the 
sufficient conditions for the stability of the rotating motion of a pro- 
jectile. 

Chetaev [2& ] considered first the rectilinear flight of a projectile. 
assuming that the velocity of the motion of its center of gravitz and 



Applied problcrr 277 

the angular velocity of rotation are both constant. With these assump- 
tions the problem reduces, as was shown by Yaievskil, to the case of 
Lagrange and Poisson of the motion of a heavy rigid body about a fixed 
point. The solution depends on the location of the roots of the poly- 
nomial 

f (4 = (a - au) (I- uz) - (,i3 - brou)2 (u = co.9 e) 

where 8 is the angle of nutation. Chetaev showed that the angle of nuta- 
tion 8 will have small deviations from its unperturbed value provided 
that all the roots of the polynomial f(u) are larger than 1 - 8, where 8 
is a small positive number. All the roots of the polynomial f(u) will be 
larger than 1 - 6, if all the roots of the polynomial F(x) = - fCl-6- xl 
are negative. For this it is necessary and sufficient that the Hurwits 
conditions be satisfied. Thus, the latter lead to the sufficient condi- 
tions of the stability of the angle of nutation of the projectile. 

Chetaev shows that for an ideal gun (8, = 8,’ = 0) these inequalities 
are satisfied simultaneously and independentlyiof 6 if the Yaievskii in- 
equality b*r * 0 - 2a > 0 is satisfied. 

For an actual gun the indicated inequalities determine the value of 
the corresponding deviation. 

Further, Chetaev studies the following cases of the rectilinear 
flight of a projectile: (i) variable angular velocity of rotation and con- 
stant velocity of motion of the center of gravity; (ii) variable velocity 
of motion of the center of gravity and variable angular velocity of rota- 
tion of the projectile. 

In both cases Chetaev finds sufficient conditions of stability for 
the nutation angle of the projectile. 

Next, he passes to the planar case of curvilinear motion of the center 
of gravity of the projectile, subject to the action of overturning and 
drag couples of forces of the air pressure. In this case the stability 
problem reduces to the finding of sufficient conditions In order that the 
region of possible changes of the variable u. determined by a certain 
equation, be inside the interval (l- 8, 11. Because of the lack of 
sufficient experimental data it is difficult to select the most accept- 
able majorant. Therefore, Chetaev proposed an approximate method for the 
analysis of the stability conditions. The essence of this method consists 
in the consideration of small sections of the trajectory as arcs of the 
corresponding circles of curvature. In this way he succeeded in obtain- 
ing the necessary conditions of stability. 

In Paper 138 1 Chetaev investigates by Llapunov’s method the stabil- 
ity of the flight of a projectile in a very flat trajectory The differ- 
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ential equations of motion are taken in the form proposed by A.N. Krylov. 
Chetaev constructs the Liapunov function in the form of a positlve- 
definite bundle of integrals of the equations of motion, and derives 
from the conditions, when the construction of such a function V is 
possible, the conditions for the stability of the unperturbed motion. 
This method of constructing the Liapunov function in the form of a linear 
bundle of integrals of the perturbed motion, which allowed him to solve 
rigorously and completely an important concrete problem, was further de- 
veloped by Chetaev, and permitted him to solve a series of important 
problems on the stability of mechanical systems. 

In this paper Chetaev explains the reasons for the lack of stability 
in the flight of projectiles observed in practice. This lack of stability 
is explained by the action, on the projectile, of dissipative forces with 
complete dissipation which cannot be taken into account. By means of the 
construction of a Liapunov function, Chetaev proves rigorously that in 
the case under consideration the stability of the flight, being dependent 
on the gyroseopic stabilization of a rotating projectile, is destroyed 
by dissipative forces. 

Paper [ 57 ] is a continuation of Chetaev’s investigations into the 
stability of the flight of a projectile. In this paper he considered the 
case of a projectile, having a cavity, filled continuously with an Ideal 
incompressible fluid. Chetaev considered the solution of this problem to 
be very important, since in a number of cases, starting from this solu- 
tion, it is possible to make a sufficient provision for stability against 
unforeseen negative influences of viscosity. 

Chetaev gave a rigorous solution of the problem, in a nonlinear form- 
ulation, of the stability of the rotating motions of a projectile with a 
cavity filled continuously with an Ideal fluid and being in the state of 
irrotational motion without. 

In Paper 137 ] the problem of the stability of the flight of a pro- 
jectile is considered in the following cases: 

(a) The cavity has the form of a circular cylinder, the axis of which 
coincides with the axis of rotation of the inertia ellipsoid of the Pro- 
jectile (without fluid). Using the results of Zhukovskli (with the rell- 
known extension) Chetaev shows that the problem of the stability of the 
rotational motions of such a projectile coincides with the classical 
problem of the stability of the usual projectile, provided that the 
inertia moments are correspondingly selected. Making use of the results 

of his previous paper [ 38 1, he gives an inequality, the fulfllment of 
which guarantees the stability of the rotational motions of a Projectile. 
having a cavity filled with a fluid, along flat trajectories. 
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(b) The cavity has the form of a cylinder with a planar diaphragm. In 
this case the ellipsoid of inertia of the projectile and the augmented 
mass, representing the liquid filling of the cavity of the projectile, is 

three-axial. This circumstance makes it difficult to apply to the problem 
the results known for continuous rigid projectiles, where naturally, it 
is assumed that the ellipsoid of inertia is an ellipsoid of revolution. 
In the paper the equations of Lagrange describing the motion are stated, 
and the stability of the unperturbed motion in the first approximation 
is investigated. For the reduced moments of inertia A, B, C inequalities 
are given. the fulfilment of which guarantees that in the first approxi- 
mation the roots of the characteristic equation are purely Imaginary and 
the unperturbed motion is stable in the first approximation. 

(c) A circular cylindrical cavity where the diaphragms form a cross 
consisting of two mutualiy orthogonal dlaaetral planes. In this case, 
also, the problem is reduced by Chetaev to the classical cases studied 
by him earlier. On the basis of these calculations, sufficient conditions. 
are given for the stability of the flight of a projectile of the type 
considered. 

This paper of Chetaev proved a starting-point 
the stability of the rotational motions of rigid 
completely filled with a liquid or having a free 
a state of vortex motion. 

for investigations into 
bodies with cavities, 
surface, in general, in 

The subject of Paper [ 38 I is close to Paper [ 49 I , in which Chetaev 
solves the problem of stability of rotation about the vertical of a rigid 
body with a fixed point in the case of Lagrange. The stability is con- 
sidered with respect to the projections p, q, r of the instantaneous 
angular velocity of the body on the moving axes and the direction cosines 
yl, yz, y3 of the vertical. In this paper Chetaev demonstrated the 
effectiveness of the method proposed by him for the construction of the 
Liapunov functions in the form of linear bundles of first integrals: 
namely, by using the known first integrals Vi = ci(i = 1, 2, 9, 4) of 
this problem, he constructs Liapunov’s function in the form of the 
suadrat ic form 

v = VI + 2AVz- (mgz + CrJ) vs + C(C--A) v2 

A 4 - 

-2C(r,+A)VI=A(52+?a)+2Ah(ga+s7B)- 

- (mgz + CrJ) (ae + FY + Es)+ 2h CX + z Ez 

where x is an arbitrary constant. Q1 the basis of the Sylvester condi- 
tions it is seen that if the inequality 

Carat - Umgz > 0 

is satisfied the constant x can be chosen in such a way that the function 
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V is positive-definite. Consequently, this Inequality is a sufficient 
condition for the stability of rotation about the vertical. 

This paper 1491 by Cbetaev, although only one-and-a-half pages long. 
proved of great significance in mechanics. It stimulated the production 
of a series of papers in which various problems of stability were solved. 

Paper 180 1 is devoted to the investigation of the motion of a heavy 
gyroscope in a Cardan suspension, the axis of the inner ring being 
vertical. Formulating the equations of motion of the gyroscope in the 
form of the Lagrange equations. and indicating their first integrals, 
Cbetaev reduces the problem to the inversion of b,vperelllptlc Integral. 
It follows from this solution that in the case of a heavy gyroscope in 
the Cardan suspension the nutatlonal motions play the leading role. 

Further. conditions are indicated for the realization of pseudo- 
regular and regular precession8 of the gyroscope, and conditlons are de- 
rived for stability with respect to the angle of nutation of the rotation 
of the gyroscope about the vertical. 

The scientific works of Cbetaev reflect to a considerable degree the 
development of analytical mechanics during the last thirty-five years. 

Cbetaev often said that Galileo, Newton, Lagrange and Liapunov deter- 
mined the basic stages in the history of mechanics. 

The name of Liapunov IS associated with the creation of the theory of 
stability of motion. Up to the beginning of the twentieth century the 
importance of this problem was not realized. Tb% difficulties connected 
with Its statement made It accessible only to a few distinguished 
scientists.Gltb this problem Lagrange, Liapunov. Thomson. Taft. Routb, 
Zbukovekii and Pofncar6 were concerned. 

At the present time this theory has great importance in its applica- 
tions. The methods of Llapunov and Cbetaev are applied to tbe solution 
of technical problems in the theory of control, guidance of flight 
vehicles. construction of instruments and underwater navigation. 


